Propriétés thermodynamiques (R123)

Composition:

100 % 2,2-dichloro 1,1,1-trifluoroéthane (CF3CHCl2)

Application:

Grands refroidisseurs centrifuges basse pression

Performance:

Peut nécessiter le remplacement des joints, des garnitures et d'autres composants pour

obtenir les bonnes conditions de fonctionnement et éviter les fuites

Lubrifiant:

Compatible avec l'huile minérale et l'alkylbenzène

Propriétés thermodynamiques

Edit
TEMP. (F)
Liquide sous pression (psia)
Densité Liquide (lb/ftˆ3)
Densité Vapeur (lb/ftˆ3)
Enthalpie Liquide (Btu/lb)
Enthalpie Vapeur (Btu/lb)
Liquide d'entropie (Btu/R-lb)
Vapeur d'entropie (Btu/R-lb)
-20
1.0
99.54
0.03413
4.558
87.35
0.01061
0.1989
-15
1.2
99.14
0.03978
5.706
88.05
0.01320
0.1984
-10
1.4
98.73
0.04618
6.857
88.75
0.01578
0.1979
-5
1.7
98.33
0.05339
8.012
89.46
0.01833
0.1975
0
2.0
97.92
0.06149
9.170
90.16
0.02086
0.1971
5
2.3
97.51
0.07055
10.33
90.87
0.02337
0.1967
10
2.6
97.10
0.08067
11.50
91.58
0.02587
0.1964
15
3.0
96.69
0.09192
12.67
92.29
0.02834
0.1961
20
3.5
96.28
0.1044
13.84
93.01
0.03080
0.1958
25
4.0
95.86
0.1182
15.02
93.72
0.03324
0.1956
30
4.5
95.44
0.1334
16.20
94.44
0.03566
0.1954
35
5.1
95.02
0.1502
17.38
95.16
0.03806
0.1953
40
5.8
94.60
0.1686
18.57
95.88
0.04045
0.1952
45
6.5
94.17
0.1887
19.76
96.60
0.04282
0.1951
50
7.3
93.74
0.2106
20.96
97.32
0.04518
0.1950
55
8.2
93.31
0.2346
22.16
98.04
0.04752
0.1950
60
9.2
92.88
0.2606
23.36
98.76
0.04984
0.1949
65
10.3
92.44
0.2889
24.57
99.48
0.05215
0.1949
70
11.4
92.01
0.3195
25.78
100.2
0.05444
0.1949
75
12.7
91.56
0.3526
27.00
100.9
0.05673
0.1950
80
14.1
91.12
0.3883
28.22
101.6
0.05899
0.1950
85
15.6
90.67
0.4268
29.44
102.4
0.06124
0.1951
90
17.2
90.22
0.4682
30.67
103.1
0.06348
0.1952
95
18.9
89.77
0.5128
31.90
103.8
0.06571
0.1953
100
20.8
89.31
0.5605
33.14
104.5
0.06792
0.1955
105
22.8
88.85
0.6117
34.38
105.2
0.07012
0.1956
110
25.0
88.39
0.6664
35.63
106.0
0.07231
0.1958
115
27.3
87.92
0.7249
36.88
106.7
0.07449
0.1959
120
29.8
87.45
0.7874
38.13
107.4
0.07665
0.1961
125
32.4
86.98
0.8540
39.39
108.1
0.07881
0.1963
130
35.3
86.50
0.9249
40.66
108.8
0.08095
0.1965
135
38.3
86.01
1.000
41.93
109.5
0.08308
0.1967
140
41.5
85.52
1.081
43.20
110.2
0.08520
0.1969
145
44.9
85.03
1.166
44.48
110.9
0.08732
0.1972
150
48.5
84.53
1.256
45.76
111.6
0.08942
0.1974
155
52.3
84.03
1.353
47.05
112.3
0.09151
0.1976
160
56.4
83.52
1.454
48.35
113.0
0.09359
0.1979
165
60.7
83.01
1.562
49.65
113.7
0.09567
0.1981
170
65.2
82.49
1.676
50.95
114.3
0.09773
0.1984
175
70.0
81.96
1.797
52.27
115.0
0.09979
0.1987
180
75.0
81.43
1.925
53.58
115.7
0.1018
0.1989
185
80.3
80.89
2.060
54.91
116.3
0.1039
0.1992
190
85.9
80.34
2.203
56.24
117.0
0.1059
0.1995
195
91.7
79.79
2.354
57.57
117.7
0.1079
0.1997
200
97.9
79.23
2.513
58.92
118.3
0.1100
0.2000

FREQUENTLY ASKED QUESTIONS

What is the chemical composition of R123 refrigerant?
R123 refrigerant is composed of 100% 2,2-dichloro-1,1,1-trifluoroethane, also known as CF3CHCl2. This chemical composition is responsible for its thermodynamic properties and performance in various applications.
What type of chillers typically use R123 refrigerant?

R123 refrigerant is commonly used in large, low-pressure centrifugal chillers. These chillers are often found in industrial and commercial applications where high cooling capacities are required. The use of R123 in these chillers allows for efficient and reliable cooling performance.

What are the key considerations when replacing components in an R123 chiller system?

When replacing components in an R123 chiller system, it is essential to ensure that the correct operating conditions are maintained to prevent leakage and ensure optimal performance. This may involve replacing seals, gaskets, and other components that are compatible with R123 refrigerant. Proper installation and maintenance are critical to prevent system failures and reduce downtime.

Is R123 refrigerant compatible with common lubricants?

Yes, R123 refrigerant is compatible with mineral oil and alkylbenzene lubricants. This compatibility is important to ensure that the lubricant does not react with the refrigerant and cause system failures or degradation over time. The use of compatible lubricants helps to maintain the integrity and performance of the chiller system.

What are the critical thermodynamic properties of R123 refrigerant?

The thermodynamic properties of R123 refrigerant include its temperature, pressure, and enthalpy values at various states. These properties are essential in designing and operating chiller systems that use R123 refrigerant. The table provided in the blog post lists the thermodynamic properties of R123 refrigerant at different temperatures and pressures.

How do the thermodynamic properties of R123 refrigerant affect its performance in chiller systems?

The thermodynamic properties of R123 refrigerant directly impact its performance in chiller systems. For example, the refrigerant’s temperature and pressure values influence its ability to absorb and release heat, which affects the chiller’s cooling capacity and efficiency. Understanding the thermodynamic properties of R123 refrigerant is crucial for designing and operating chiller systems that meet specific cooling requirements.