In today’s rapidly evolving renewable energy landscape, optimizing solar panel installation is critical for maximizing energy production. Two fundamental parameters determine how effectively your solar panels capture sunlight: orientation et tilt. These factors, when properly calculated, can significantly increase your system’s efficiency and return on investment.

Orientation refers to the directional facing of your panels relative to the sun’s path (typically measured as azimuth angle), while tilt represents the angular position relative to the horizontal ground. Together, these parameters determine how directly sunlight strikes your panels throughout the day and across seasons.
- The Science Behind Solar Angles
- Solar Declination (δ)
- Solar Position Coordinates
- Surface-Solar Relationships
- Calculating Optimal Panel Positioning
- Vertical Surfaces (Σ = 90°)
- Horizontal Surfaces (Σ = 0°)
- Advanced Considerations for Solar Tracking
- Plus profond sur les angles solaires ?
- Table 1: Solar Declination Values Throughout the Year (2025)
- Table 2: Optimal Fixed Tilt Angles by Latitude
- Table 3: Surface-Solar Azimuth (γ) Calculation Reference
- Table 4: Solar Position Angles at Different Hours (Example for 40°N Latitude on May 15, 2025)
- Table 5: Estimated Energy Production Ratio by Orientation and Tilt (Normalized to Optimal)
- Table 6: Solar Tracking System Comparison
- Applications pratiques
The Science Behind Solar Angles
Solar energy optimization relies on understanding several interconnected angular relationships:
Solar Declination (δ)
The Earth’s axial tilt of 23.45° relative to its orbital plane creates a daily variation in the angle between the Earth-Sun line and Earth’s equatorial plane. This angle, known as solar declination (δ), can be calculated using:
δ = 23.45° × sin[360° × (284 + N)/365]
Where N represents the day of year (with January 1 = 1).
Solar Position Coordinates
The sun’s position is defined by:
- Solar altitude (β): Angle between the sun and the horizontal plane
- Solar azimuth (ϕ): Angular displacement from true south measured in the horizontal plane
Surface-Solar Relationships
For optimal energy capture, we must determine the angle of incidence (θ) between direct solar radiation and the panel surface normal. This depends on:
- Surface tilt angle (Σ): Measured from horizontal
- Surface azimuth (ψ): Direction the surface faces relative to true south
- Surface-solar azimuth (γ): Angular difference between solar azimuth and surface azimuth
Calculating Optimal Panel Positioning
The angle of incidence (θ) for any surface with tilt angle Σ can be determined by:
cos θ = cos β × cos γ × sin Σ + sin β × cos Σ
For specific surface types:
Vertical Surfaces (Σ = 90°)
cos θ = cos β × cos γ
Horizontal Surfaces (Σ = 0°)
cos θ = sin β
Advanced Considerations for Solar Tracking
The sun’s position at any hour (τ) is expressed through the hour angle (ω):
ω = 15° × (τ – 12)
Where τ represents the solar time in hours, with morning hours negative and afternoon hours positive.
Solar altitude can be determined with:
sin β = sin δ × sin φ + cos δ × cos φ × cos ω
Where φ represents latitude.
Plus profond sur les angles solaires ?
L'axe autour duquel la Terre tourne est incliné d'un angle de 23,45 degrés par rapport au plan orbital de la Terre et à l'équateur du Soleil. L'axe de la Terre entraîne une variation jour après jour de l'angle entre la ligne terre-soleil et le plan équatorial de la Terre appelée déclinaison solaire δ. Cet angle peut être estimé par l'équation suivante :
$$\delta = 23.45 \sin\left[\frac{360}{365}(284 + N)\right]$$
où N = jour de l'année, avec 1 janvier + 1
Pour déterminer l'angle d'incidence θ entre un faisceau solaire direct et la normale à la surface, l'azimut surface ψ et l'azimut surface-solaire γ doivent être connus. L'azimut surface-solaire est désigné par γ et est la différence angulaire entre l'azimut solaire ϕ et l'azimut surface ψ. Pour une surface orientée à l’est du sud, γ = ϕ − ψ le matin, et γ = ϕ + ψ l’après-midi. Pour les surfaces orientées à l’ouest ou au sud, γ = ϕ + ψ le matin et γ = ϕ − ψ l’après-midi. Pour les surfaces orientées au sud, ψ = 0 degré, donc γ = ϕ pour toutes les conditions. Les angles δ, β et ϕ sont toujours positifs.


Table 1: Solar Declination Values Throughout the Year (2025)
| Month | Representative Day | Day Number (N) | Declination (δ) |
|---|---|---|---|
| January | 15th | 15 | -21.27° |
| February | 15th | 46 | -13.28° |
| March | 15th | 74 | -2.82° |
| April | 15th | 105 | 9.41° |
| May | 15th | 135 | 18.79° |
| June | 15th | 166 | 23.31° |
| July | 15th | 196 | 21.52° |
| August | 15th | 227 | 13.78° |
| September | 15th | 258 | 2.22° |
| October | 15th | 288 | -9.97° |
| November | 15th | 319 | -19.15° |
| December | 15th | 349 | -23.34° |
Table 2: Optimal Fixed Tilt Angles by Latitude
| Latitude (°N) | Optimal Year-Round Tilt (°) | Winter Optimal Tilt (°) | Summer Optimal Tilt (°) |
|---|---|---|---|
| 0 (Equator) | 0 | 15 | 15 |
| 10 | 10 | 25 | 5 |
| 20 | 20 | 35 | 5 |
| 30 | 30 | 45 | 15 |
| 40 | 40 | 55 | 25 |
| 50 | 50 | 65 | 35 |
| 60 | 60 | 75 | 45 |
Table 3: Surface-Solar Azimuth (γ) Calculation Reference
| Surface Orientation | Morning Calculation | Afternoon Calculation |
|---|---|---|
| East of South | γ = ϕ – ψ | γ = ϕ + ψ |
| West of South | γ = ϕ + ψ | γ = ϕ – ψ |
| Directly South | γ = ϕ (ψ = 0°) | γ = ϕ (ψ = 0°) |
Table 4: Solar Position Angles at Different Hours (Example for 40°N Latitude on May 15, 2025)
| Solar Time (hr) | Hour Angle (ω) | Solar Altitude (β) | Solar Azimuth (ϕ) |
|---|---|---|---|
| 6:00 | -90° | 8.7° | -110.8° |
| 8:00 | -60° | 28.7° | -88.7° |
| 10:00 | -30° | 48.0° | -53.8° |
| 12:00 (noon) | 0° | 58.8° | 0.0° |
| 14:00 | 30° | 48.0° | 53.8° |
| 16:00 | 60° | 28.7° | 88.7° |
| 18:00 | 90° | 8.7° | 110.8° |
Table 5: Estimated Energy Production Ratio by Orientation and Tilt (Normalized to Optimal)
| Panel Orientation | Panel Tilt | Annual Energy Ratio | Summer Energy Ratio | Winter Energy Ratio |
|---|---|---|---|---|
| South | Latitude | 1.00 | 0.98 | 1.00 |
| South | Latitude-15° | 0.98 | 1.00 | 0.93 |
| South | Latitude+15° | 0.97 | 0.93 | 1.00 |
| East | Latitude | 0.85 | 0.87 | 0.81 |
| West | Latitude | 0.85 | 0.87 | 0.81 |
| SE/SW | Latitude | 0.95 | 0.95 | 0.94 |
| Horizontal | 0° | 0.89 | 0.95 | 0.76 |
Table 6: Solar Tracking System Comparison
| Tracking System Type | Energy Gain vs. Fixed | Complexité | Exigences d'entretien | Relative Cost |
|---|---|---|---|---|
| Fixed (optimized) | Référence | Faible | Minimal | Faible |
| Single-axis (E-W) | +25-35% | Moyen | Modéré | Moyen |
| Single-axis (N-S) | +15-20% | Moyen | Modéré | Moyen |
| Dual-axis | +35-45% | Haut | Significant | Haut |
| Seasonal manual adjustment | +4-8% | Faible | Low (quarterly) | Très lent |
These tables provide critical reference data for solar system design, allowing for quick evaluation of optimal configurations based on geographic location, installation constraints, and seasonal performance requirements.
Applications pratiques
La position du soleil peut être définie en fonction de son altitude β au-dessus de l'horizon et de son azimut ϕ mesuré dans le plan horizontal.
Understanding these relationships allows us to:
- Determine optimal fixed panel positions based on location-specific parameters
- Calculate seasonal adjustments to maximize year-round production
- Evaluate potential benefits of tracking systems versus fixed installations
- Estimate energy production throughout different times of day and year





