顕熱は、相変化を引き起こさずに物質に、または物質から伝達される熱です。 熱いものや冷たいものに触れたときに感じる熱のことです。
潜熱は、液体から気体、または気体から固体などの相変化中に物質に、または物質から伝達される熱です。 物質の温度を変えずに状態を変化させるのに必要な熱です。
全熱は顕熱と潜熱の合計です。 物質に、または物質から伝達される熱の総量です。
方程式
顕熱:
顕熱とは、私たちが感じたり、温度計で測定したりできる熱の種類です。 これは、物質の相を変化させることなく(例えば、固体から液体、または液体から気体へ)温度を変化させるのに必要なエネルギーです。
$$H_S = 1.08 \times CFM \times \Delta T$$潜熱:
潜熱は、物質の相を変化させる(たとえば、固体から液体、または液体から気体)のに必要なエネルギーです。 温度変化を引き起こしません。
$$H_L = 0.68 \times CFM \times \Delta W_{GR}$$総熱量:
全熱は顕熱と潜熱の合計です。
$$H_T = H_S + H_L$$どこ:
- HSは顕熱 (Btu/hr)
- HLは潜熱 (Btu/hr)
- HTは総熱量 (Btu/hr)
- CFM空気流量 (立方フィート/分)
- ΔTは温度差 (°F)
- ΔWGRは湿度比の差 (粒子 H2O/ポンド DA)
例
エアコンは部屋から 10,000 Btu/hr の総熱を除去します。 空気流量は 1000 CFM、温度差は 20°F です。 湿度比の差は 0.005 グレイン H2O/ポンドです。 DA。
顕熱:
$$H_S = 1.08 \times 1000 \times 20 = 21,600 Btu/hr$$潜熱:
$$H_L = 0.68 \times 1000 \times 0.005 = 3.4 Btu/hr$$総熱量:
$$H_T = H_S + H_L = 21,600 + 3.4 = 21,603.4 Btu/hr$$U 値と面積
材料の U 値は、その熱抵抗の尺度です。 U 値が低いほど、断熱性が高くなります。
表面の面積はそのサイズの尺度です。
方程式
$$H = U \times A \times \Delta T$$どこ:
- Hは熱伝達率 (Btu/hr)
- Uは U 値 (Btu/hr. ft². °F)
- あ面積 (ft²)
- ΔTは温度差 (°F)
例
壁の U 値は 0.25 Btu/hr.ft² です。 °F、100 ft²の面積。 壁の内側と外側の温度差は20°Fです。
熱伝達率:
$$H = 0.25 \times 100 \times 20 = 500 Btu/hr$$顕熱比 (SHR)
顕熱比 (SHR) は、全熱に対する顕熱の比率です。 総熱量のうちどれだけが顕熱であるかを示す尺度です。
方程式
$$SHR = \frac{H_S}{H_T} = \frac{H_S}{H_S + H_L}$$例
前の例では、顕熱は 21,600 Btu/hr、総熱は 21,603.4 Btu/hr です。 したがって、SHR は次のようになります。
$$SHR = \frac{21,600}{21,603.4} = 0.999$$結論
顕熱、潜熱、全熱は HVAC における重要な概念です。 これらの概念を理解することで、HVAC システムをより適切に設計および運用できるようになります。
FREQUENTLY ASKED QUESTIONS
The specific heat capacity of a substance determines how much heat energy is required to change its temperature by a given amount. Substances with high specific heat capacities, such as water, require more heat energy to change their temperature than substances with low specific heat capacities, such as air. Therefore, when designing HVAC systems, it’s essential to consider the specific heat capacity of the substances involved in heat transfer to ensure efficient sensible heat transfer.
A common example of latent heat transfer in an HVAC system is the dehumidification process in an air conditioning system. When moist air passes over a cooling coil, the latent heat of vaporization is transferred from the air to the coil, causing the water vapor to condense into liquid water. This process reduces the humidity of the air and removes heat from the space, making it an essential component of air conditioning systems.
Total heat is calculated by summing the sensible heat and latent heat transferred in an HVAC system. The sensible heat can be calculated using the specific heat capacity of the substance and the temperature change, while the latent heat can be calculated using the latent heat of vaporization or fusion and the mass of the substance undergoing a phase change. For example, in a cooling coil, the total heat transfer can be calculated by adding the sensible heat transfer due to the temperature change of the air and the latent heat transfer due to the condensation of water vapor.
The units of measurement for sensible, latent, and total heat are typically measured in joules (J) or British thermal units (BTU). The specific heat capacity of a substance is typically measured in joules per kilogram per kelvin (J/kg·K) or BTU per pound per degree Fahrenheit (BTU/lb·°F). The latent heat of vaporization or fusion is typically measured in joules per kilogram (J/kg) or BTU per pound (BTU/lb).
The humidity of the air has a significant impact on latent heat transfer in an HVAC system. When the air is humid, there is more moisture available to condense on the cooling coil, resulting in a greater amount of latent heat transfer. Conversely, when the air is dry, there is less moisture available to condense, resulting in less latent heat transfer. Therefore, it’s essential to consider the humidity of the air when designing HVAC systems to ensure efficient latent heat transfer.
Total heat transfer is an essential concept in various HVAC applications, including air conditioning systems, heat pumps, and refrigeration systems. It’s used to calculate the total cooling or heating capacity of a system, which is critical for selecting the appropriate equipment size and designing efficient systems. Additionally, total heat transfer is used to analyze the performance of HVAC systems and identify opportunities for energy savings and optimization.