Procedimiento de cálculo de la carga de refrigeración

Obtener características del edificio

  1. Materiales de construcción.
  2. Propiedades de los materiales de construcción: valores U, valores R, coeficientes de sombreado, coeficientes de ganancia de calor solar.
  3. Tamaño.
  4. Color.
  5. Forma.
  6. Ubicación.
  7. Orientación, N, S, E, W, NE, SE, SW, NW, etc.
  8. Sombreado exterior/interior.
  9. Tipo de ocupación y hora del día.

Seleccione las condiciones climáticas del diseño exterior

Verhttps://hvac-eng.com/weather-design-conditions-for-selected-locations/
  1. Temperatura.
  2. Dirección y velocidad del viento.
  3. Condiciones para seleccionar las condiciones climáticas de diseño exterior:
  • Tipo de estructura, pesada, media o liviana.
  • ¿Está la estructura aislada? Si la estructura se calienta o enfría, la estructura debe estar aislada según el código.
  • ¿Está la estructura expuesta a fuertes vientos?
  • Carga de infiltración o ventilación.
  • Cantidad de vidrio.
  • Tiempo de ocupación del edificio.
  • Tipo de ocupación del edificio.
  • Duración de la temperatura interior reducida.
  • ¿Cuál es el rango de temperatura diario, mínimo/máximo?
  • ¿Existen variaciones significativas con respecto a los datos meteorológicos de ASHRAE?
  • ¿Qué tipo de dispositivos de calefacción se utilizarán?
  • Costo esperado del combustible.

Seleccionar la temperatura interior de diseño a mantener en cada espacio.

Verhttps://hvac-eng.com/indoor-design-conditions/
  • Estimar temperaturas en espacios no acondicionados.
  • Seleccione y/o calcule valores U para paredes, techos, ventanas, puertas, tabiques, etc.
  • Determinar el área de paredes, ventanas, pisos, puertas, tabiques, etc.
  • Calcule las ganancias de calor por conducción para todas las paredes, ventanas, pisos, puertas, tabiques, tragaluces, etc.
  • Calcule las ganancias de calor solar para todas las paredes, ventanas, pisos, puertas, tabiques, tragaluces, etc.
  • Las ganancias de calor por infiltración generalmente se ignoran a menos que la temperatura del espacio y la tolerancia a la humedad sean críticas.
  • Calcule la ganancia de calor de ventilación requerida.
  • Calcule las ganancias de calor internas de las luces, las personas y los equipos.
  • Calcule la suma de todas las ganancias de calor indicadas en los puntos G, H, I, J y K anteriormente en esta lista.
  • Incluir enfriamiento matutino para edificios con uso intermitente y configuración nocturna.
  • Tenga en cuenta el exceso de capacidad del sistema HVAC permitido para el enfriamiento de la mañana.
  • Considere los equipos y materiales que se introducirán en el edificio por encima de la temperatura interior de diseño.
  • Los cálculos de la carga de enfriamiento deben realizarse utilizando métodos aceptados en la industria para determinar los requisitos reales de la carga de enfriamiento.

FREQUENTLY ASKED QUESTIONS

What are the key building characteristics that affect cooling load calculation?
The key building characteristics that affect cooling load calculation include construction materials, material properties (U-values, R-values, shading coefficients, solar heat gain coefficients), size, color, shape, location, orientation, external and internal shading, and occupancy type and time of day. These factors influence the amount of heat gain and loss through the building envelope, which in turn affects the cooling load. For example, a building with large windows and south-facing orientation will have a higher cooling load due to increased solar heat gain.
How do I select outdoor design weather conditions for cooling load calculation?

Selecting outdoor design weather conditions involves considering factors such as temperature, wind direction and speed, and other conditions specific to the location. The type of structure (heavy, medium, or light), insulation, exposure to high winds, infiltration or ventilation load, amount of glass, time of building occupancy, type of building occupancy, and length of reduced indoor temperature also influence the selection of outdoor design weather conditions. For example, a building in a hot and humid climate will require a higher outdoor design temperature than one in a mild climate.

What is the significance of infiltration and ventilation load in cooling load calculation?

Infiltration and ventilation load refer to the heat gain and loss through air leakage and intentional ventilation in a building. These loads can significantly impact the cooling load, especially in buildings with high occupancy rates or those located in areas with high outdoor temperatures. Infiltration and ventilation load can be estimated using various methods, including the air change per hour (ACH) method or the infiltration credit method. Accurate estimation of these loads is crucial to ensure that the cooling system is sized correctly.

How do I determine the indoor design temperature for each space in a building?

Determining the indoor design temperature for each space in a building involves considering factors such as the type of occupancy, activity level, and desired comfort level. For example, a office space may require a lower indoor design temperature than a warehouse or storage area. The indoor design temperature should also take into account the outdoor design weather conditions and the building’s construction characteristics. A general rule of thumb is to maintain an indoor design temperature between 22°C to 25°C (72°F to 77°F) for most commercial and residential buildings.

What is the impact of shading coefficients on cooling load calculation?

Shading coefficients represent the amount of solar radiation that is blocked by external shading devices such as overhangs, louvers, or blinds. A lower shading coefficient indicates more effective shading, which reduces the cooling load. Shading coefficients can be estimated using various methods, including the ASHRAE Clear Sky Model or the Solar Heat Gain Coefficient (SHGC) method. Accurate estimation of shading coefficients is crucial to ensure that the cooling system is sized correctly and to optimize energy efficiency.

Can you explain the concept of solar heat gain coefficients in cooling load calculation?

Solar heat gain coefficients (SHGC) represent the amount of solar radiation that enters a building through windows and other fenestration. SHGC values range from 0 to 1, with lower values indicating less solar heat gain. The SHGC value depends on factors such as the type of glazing, frame material, and shading devices. Accurate estimation of SHGC values is crucial to ensure that the cooling system is sized correctly and to optimize energy efficiency. For example, a building with low-E glazing and external shading devices will have a lower SHGC value than one with single-pane glazing and no shading devices.

How do I account for occupancy schedules and time of day in cooling load calculation?

Occupancy schedules and time of day significantly impact the cooling load, as they influence the amount of heat gain and loss through the building envelope. To account for occupancy schedules and time of day, you can use various methods, including the bin method or the heat gain calculation method. These methods involve estimating the heat gain and loss during different periods of the day and adjusting the cooling load accordingly. For example, a building with a high occupancy rate during the day may require a higher cooling load than one with a low occupancy rate at night.

Los comentarios están cerrados.