制冷剂管道 - 第 2 部分

在这篇文章中,我们将继续讨论如何确定制冷剂管道的尺寸。 本培训旨在尽可能简单实用,为您提供正确、准确地确定制冷剂管道尺寸的必要知识。 我们将详细介绍该过程的重要方面,包括确定管道尺寸、压降和其他因素。 通过这种全面的培训,您将有信心在任何情况下调整制冷剂管道的尺寸。

制冷剂吸入管道细节

上浆制冷剂管线

ASHRAE 手册 HVAC 系统和设备第 41 章和第 2 章包括常用制冷剂的吸入、排出和液体管线的尺寸。 吸入和排出管路的饱和吸入温度 (SST) 的变化为 0.5、1 和 2°F(0.28、0.56 和 1.7°C),液体管路的饱和吸入温度 (SST) 变化为 1°F (0.56°C)。 该数据基于水冷设备 105°F (40.6°C) 的冷凝温度,必须针对其他温度进行调整,例如风冷设备的温度(通常为 120 至 125°F [48.9 至 51.7° C])。 此外,表格假定等效管道长度为 100 英尺(30.5 m),但实际压降可以根据应用的实际长度从表格方程中推导出来。

饱和吸气温度基于离开蒸发器的压力,代表没有过热的气体制冷剂温度。 离开蒸发器的实际制冷剂温度将高于此。 两个温度之间的差异称为过热度。

制冷剂管路的等效长度

下表提供了估计等效长度的信息。 实际等效长度是通过计算管道将遵循的路径长度(以英尺(米)为单位)并加上沿该长度的管件和/或附件的压降来估计的。 该表提供了管件和附件的等效直管英尺的压降。

表 1 – 配件的等效长度(英尺)
表 2 – 阀门和制冷设备的等效长度(英尺)

例如,在“配件的等效长度“,我们看到 7/8 英寸(22 毫米)长半径弯头的压降相当于 1.4 英尺(0.43 m)的直铜管。


如何确定等效长度

计算以下冷凝机组与 DX 空气处理机组的液体管路的等效长度:

液体管路由以下元件组成:

  • •22 英尺(6.7 m)1-3/8 英寸(35 毫米)管道
  • 7个长半径弯头
  • 1个干燥过滤器
  • 1个视镜
  • 1个球型隔离阀

确定制冷剂配件使用的等效长度 表格1表2)。


如何确定液体管线的尺寸

Size the refrigerant liquid lines and determine the sub-cooling required to avoid flashing at the TX valve for the condensing unit with DX air-handling unit shown in the previous example. The system:

  • 使用 R-410A
  • 有铜管
  • 蒸发器运行温度为 40°F (4.4°C)
  • 冷凝器工作温度为 120°F (48.9°C)
  • 容量为 60 吨(211 千瓦)
  • 液体管线当量为 113.6 ft (34.64 m)
  • 有一个 20 英尺(6.1 m)的立管,蒸发器位于冷凝器上方

确定液体管线尺寸的第一步是估计系统所需管道的尺寸。 接下来计算设备和所服务空间之间的实际温差 (ΔT)。 然后必须计算实际管道压降并确定总压降。 还必须确定 TX 阀处 R-410A 的饱和压力、TX 阀处的饱和温度以及 TX 阀处饱和液体所需的过冷度。 最后,必须计算正常运行所需的过冷度。 遵循这些步骤将确保系统设计正确并且高效运行。


第 1 步 – 估算管道尺寸

要计算 60 吨装置的液体管线尺寸,请参阅下表。 根据该表,1-3/8 英寸(35 毫米)的管道适用于 79.7 吨(280 千瓦)的设备。 请注意,表中的条件(等效长度和冷凝温度)与设计条件不同。

表 3 – R-410A 制冷剂管道尺寸(吨)

第 2 步 – 计算实际 ∆T

我们可以根据设计条件计算饱和温差:

`{:[DeltaT_(“Actual “)=DeltaT_(“Table “)[(” Actual Length “)/(” Table Length “)][(” Actual Capacity “)/(” Table Capacity “)]^(1.8)],[DeltaT_(“Actual “)=1^(@)F[(113.6ft)/(100.0ft)][(60.0” Tons “)/(79.7” Tons “)]^(1.8)=0.68^(@)F],[{: Delta DeltaT_(“Actual “)=0.56^(@)C[(34.64(” “m))/(30.48(” “m))][(211(” “kW))/(280(” “kW))]^(1.8)=0.39^(@)C]]:}`

步骤 3 – 计算实际管道压降

根据 表3, the pressure drop for 1°F (0.56°C) saturation temperature drop with a 100 ft equivalent length is 4.75 PSI (32.75 kPa). The actual piping pressure drop is determined using the equation:

`{:[” Pressure “” Drop “_(“Actual “)=” Pressure Drop “_(“Table “)[(DeltaT_(“Actual “))/(DeltaT_(“Table “))]],[[” Pressure Drop “p_(“Actual “)=32.75kPaquad[(0.39^(@)C)/(0.56^(@)C)]=22.81kPa]],[]:}`

步骤 4 – 计算总压降

接下来确定总压降,我们使用 表4,回想一下,立管长 20 英尺。对于 R-410A,压降为 0.43 PSI 每英尺 (9.73 kPa/m)。

`” Pressure Drop from the Riser “=” Pressure Drop “xx(” Refrigerant Pressure Drop “)/(ft)`
表 4 – 液体管路中制冷剂的压降
`{:[” Pressure Drop from the Riser “=20.0ftxx(0.43PSI)/(ft)=8.6PSI],[[” Pressure Drop from the Riser “=6.1(” “m)xx(9.73kPa)/(m)=259.35kPa]]:}`

总压降=实际压降+立管压降

总压降 = 3.23 PSI + 8.6 PSI = 11.83 PSI

总压降 = 59.35 kPa + 22.81 kPa = 82.16 kPa


步骤 5 – 确定 TX 阀处 R-410A 的饱和压力

使用制冷剂特性表,可在 暖通工程网 or references such as ASHRAE, the saturated pressure for R-410A at 120°F is 433 PSIA (absolute) (2985 kPaA). To calculate the saturation pressure at the TX valve, we take the saturated pressure of R-410A at 120°F and subtract the total pressure drop.

饱和压力TX阀门 = 饱和压力120华氏度 – 总压降
饱和压力TX阀门 = 433.0 PSIA – 11.83 PSIA = 421.17 PSIA
(饱和压力TX阀门 = 2985.0 kPa – 82.15 lPa = 2902.85 kPa)


步骤 6 – 确定 TX 的饱和温度

返回参考制冷属性表,可以使用 TX 阀处的饱和压力 (421 PSIA) 来插值 TX 阀处的饱和温度。 TX 阀处的饱和温度为 117.8°F。


第 7 步 - 确定 TX 阀处饱和液体所需的过冷度

TX 阀处需要有饱和液体的过冷度可以通过以下公式找到:

过冷度=实际饱和温度-饱和温度TX阀门
过冷度 = 120.0°F – 117.8°F = 2.2°F


第 8 步 - 确定正常运行所需的过冷度

2.2°F 是 TX 阀处具有饱和液体制冷剂所需的过冷量。 如果少了,制冷剂就会开始闪蒸,TX 阀将无法正常工作。 为了使 TX 阀正常运行并避免隔膜颤动,TX 阀处应有额外 4°F 的过冷度。

过冷要求 = TX 阀门温度 + 最低系统温度
过冷度要求 = 2.2°F + 4.0°F = 6.2°F

在以下帖子中,我们将讨论与冷冻油、吸入管线尺寸、吸入和排出立管中的回油、热力膨胀阀、热气旁路、热气旁路管线尺寸、热气旁路阀、如何确定尺寸相关的主题。热气旁路管线、安装细节、抽空、管道保温、制冷剂管线安装、低温运行、风扇循环和风扇速度控制、冷凝器溢流设计、安全和环境。 所有这些主题对于理解制冷剂管道的不同方面都是至关重要的,并将确保对该主题的全面了解。

FREQUENTLY ASKED QUESTIONS

What are the key factors to consider when determining pipe size for refrigerant piping?
The key factors to consider when determining pipe size for refrigerant piping include the refrigerant flow rate, pressure drop, pipe material, and insulation type. The pipe size must be large enough to accommodate the refrigerant flow rate while minimizing pressure drop, which can lead to reduced system efficiency and increased energy consumption. Additionally, the pipe material and insulation type can affect the overall system performance and must be selected accordingly.
How do I calculate the equivalent length for refrigerant lines?

The equivalent length for refrigerant lines is calculated by considering the actual length of the pipe, as well as the fittings, valves, and other components that contribute to pressure drop. The equivalent length is typically calculated using tables or charts provided by the pipe manufacturer or through the use of specialized software. It’s essential to accurately calculate the equivalent length to ensure that the pipe size is correctly determined.

What is the impact of pressure drop on refrigerant piping system performance?

Pressure drop in refrigerant piping systems can lead to reduced system efficiency, increased energy consumption, and decreased system capacity. As pressure drop increases, the compressor must work harder to maintain the desired system pressure, resulting in higher energy bills and increased wear on the compressor. Additionally, excessive pressure drop can lead to refrigerant flow restrictions, causing the system to malfunction or even fail.

How do I determine the correct pipe size for refrigerant suction piping?

The correct pipe size for refrigerant suction piping is determined by considering the refrigerant flow rate, suction pressure, and pipe material. A larger pipe size is typically required for suction piping to minimize pressure drop and ensure proper system performance. The pipe size must also be compatible with the compressor and other system components to ensure safe and efficient operation.

What are some common mistakes to avoid when sizing refrigerant piping?

Common mistakes to avoid when sizing refrigerant piping include underestimating the refrigerant flow rate, neglecting to consider pressure drop, and failing to account for pipe fittings and valves. Additionally, using incorrect or outdated data, such as incorrect pipe sizing charts or tables, can lead to inaccurate pipe size determination. It’s essential to follow established industry guidelines and best practices when sizing refrigerant piping to ensure accurate and reliable results.

How can I ensure that my refrigerant piping system is properly insulated to minimize energy losses?

To ensure that your refrigerant piping system is properly insulated, it’s essential to select the correct insulation material and thickness based on the system operating conditions and environment. The insulation should be able to withstand the maximum and minimum temperatures expected in the system, as well as any mechanical stresses or vibrations. Additionally, the insulation should be properly installed and maintained to ensure that it remains effective over the system’s lifespan.