Sistemas y equipos

Equipos y sistemas

Thermal Storage (HVAC)

Thermal energy may be stored in three main ways: – Sensible Storage – Latent Storage – Thermo-Chemical Storage. In addition, the two common thermal storage strategies employed are: – Load Levelling Strategy – Load Shifting Strategy

Beneficios de flujo de refrigerante variable (VRF)

VRF systems are available either as heat pump systems or as heat recovery systems for those applications where simultaneous heating and cooling is required. In addition to providing superior comfort, VRF systems offer design flexibility, energy savings, and cost effective installation. A VRF system offers flexible installation and energy-saving cooling and heating comfort and should be considered as an alternative to traditional systems for those applications where zoning or part load operation is required.

Dimensionamiento del tanque hidroneumático

Hydropneumatic tanks are primarily used in a domestic water system for draw down purposes when the pressure booster system is off on no-flow shutdown (NFSD). The NFSD circuitry turns the lead pump off when there is no demand on the system. While the system is off in this condition, the hydropneumatic tank will satisfy small demands on the system. Without the tank, the booster would restart upon the slightest call for flow such as a single toilet being flushed or even a minute leak in the piping system. Hydropneumatic tank sizing is dependent on two factors: – Length of time you wish the pumps to remain off in a no-flow situation. – The tank location in relation to the pressure booster.

Tuberías típicas para calentamiento de vapor

The piping and radiator connections shown in this section are diagrammatic and illustrate the proper method of making piping connections in steam heating processes. – Two pipe steam systems radiator connections – Piping connections for unit heaters (steam) – Two pipe– #steam trap installations – Two Pipe Steam Systems Convector Connections – Exposed #Pipe #Coils– Two Pipe Steam – One pipe #steam systems radiator connections – One pipe steam systems #convector connections – One pipe steam systems convector connections

Tubería de refrigerante (Parte 1)

El buen diseño de tuberías da como resultado un equilibrio entre el costo inicial, la caída de presión y la confiabilidad del sistema. El costo inicial se ve afectado por el diámetro y el diseño de la tubería. La caída de presión en la tubería debe minimizarse para evitar afectar negativamente el rendimiento y la capacidad. Debido a que casi todos los sistemas enviados por campo tienen aceite de compresor que pasa a través del circuito de refrigeración y de regreso al compresor, se debe mantener una velocidad mínima en la tubería para que se devuelva el aceite suficiente al sumidero del compresor en condiciones de carga completa y parcial. Varios sistemas HVAC requieren que las tuberías de refrigeración de campo se diseñen e instalen en el sitio. Los ejemplos incluyen unidades de condensación, bobina de expansión directa (DX) en manejadores de aire, evaporadores remotos con enfriadores refrigerados por aire y enfriadores con condensadores remotos refrigerados por aire. Esta guía cubre R-22, R-407C, R-410A y R-134A utilizada en sistemas de aire acondicionado comercial.

Métodos de enfriamiento de líquidos de centro de datos

A variety of liquids could be considered for Data Center applications. When liquids are employed within separate cooling loops that do not communicate thermally, the system is considered to be air cooling. The most obvious illustration covers the chilled-water CRACs that are usually deployed at the periphery of many of today’s data centers. At the other end of the scale, the use of heat pipes or pumped loops inside a computer, wherein the liquid remains inside a closed loop within the server, also qualifies as air-cooled electronics, provided the heat is removed from the internal closed loop via airflow through the electronic equipment chassis.

Mantener y limpiar el acero inoxidable

El acero inoxidable proporciona su resistencia de corrosión superior al desarrollar una película superficial de óxido de cromo durante el proceso de fabricación. Para garantizar la máxima protección contra la corrosión, el acero inoxidable debe mantenerse limpio y tener un suministro adecuado de oxígeno para combinar con el cromo en el acero inoxidable para formar "óxido de cromo", una capa de pasivación protectora. El acero inoxidable es el material de construcción más rentable disponible para extender la vida útil de una torre de enfriamiento, enfriador de circuitos cerrados o condensador evaporativo en la industria HVAC-R.

Cooling Towers (Free Cooling Operation)

Cooling towers are used to dissipate heat from air conditioning or industrial process systems. Many of the air conditioning systems currently in use only operate during the summer cooling season, but there are numerous air conditioning and process systems that require cooling year-round. In some cases, the entire cooling system is required to operate during the winter. The cooling tower is required to provide the same 85° F (30° C) or colder water to the system as it does in the summer, but it does so at lower ambient temperatures. However, there are some applications designed to use the cooling tower for “free cooling”. Free cooling is when chilled water is cooled by cooling tower water through the use of heat exchangers without the use of refrigerant compressors. Free cooling can be accomplished when ambient conditions allow the cooling tower to produce “chilled water” for the system.

Cooling Towers (Capacity Control)

Free cooling systems can generate significant savings for the owners of such systems. However, the amount of potential energy savings available depends almost totally on the overall system design and on the selection of equipment for use in the system. In general, the designer must balance higher equipment cost with greater opportunity for energy savings. Fortunately, these savings — and their associated costs —are reasonably quantifiable so that designers can make intelligent choices guided by reliable information. This article will describe Capacity Control Methods in free cooling design schemes.

Constant Air Volume (CAV) Systems

HVAC air systems can be either centralized or decentralized. Centralized air systems receive their cooling and heating energy from a remote central plant. Decentralized HVAC air systems contain the central heating and cooling plant equipment within the air system itself. HVAC air systems can also be constant air volume (CAV) or variable air volume (VAV). CAV systems deliver constant supply airflow at a variable temperature. VAV systems deliver variable supply airflow at a constant temperature. CAV and VAV air systems can be further subdivided into systems that condition a single temperature zone and systems that condition multiple temperature zones.

Anterior

Controles y automatización

Refrigeración líquida directa al chip: el futuro de la gestión térmica de los centros de datos de alta densidad

Data center power densities have surged to 12-30 kW per rack, making liquid cooling essential. Learn how single-phase and two-phase direct-to-chip systems work, refrigerant selection criteria, and critical design considerations for hoses, tubing, and couplings in modern high-density data centers.

Diagramas de control de climatización

En esta publicación de blog, presentaremos algunos de los diagramas de control de HVAC más comunes. También proporcionaremos una breve explicación de cada diagrama y cómo sus componentes funcionan juntos. Los diagramas de control de HVAC son herramientas esenciales para diseñar, instalar y mantener sistemas HVAC. Proporcionan una representación visual de los componentes del sistema, cómo están interconectados y cómo se controlan. Esta información se puede utilizar para solucionar problemas, optimizar el rendimiento y tomar decisiones informadas sobre las actualizaciones del sistema.