制冷剂管道要求

This guide focuses on systems that use Refrigerant-22 (R-22). While the general requirements are the same for systems that use other refrigerants, velocities and pressure drops will differ.

制冷剂管道

审查制冷剂在制冷周期内发生的身体变化将有助于证明管道设计必须满足的某些要求。

蒸气压缩制冷

Figure below illustrates a basic vapor-compression refrigeration cycle. Refrigerant enters the evaporator in the form of a cool, low-pressure mixture of liquid and vapor (A). Heat is transferred to the refrigerant from the relatively warm air that is being cooled, causing the liquid refrigerant to boil. The resulting refrigerant vapor (B) is then pumped from the evaporator by the compressor, which increases the pressure and temperature of the vapor.

蒸气压缩制冷

The resulting hot, high-pressure refrigerant vapor (C) enters the condenser where heat is transferred to ambient air, which is at a lower temperature than the refrigerant. Inside the condenser, the refrigerant vapor condenses into a liquid and is subcooled. This liquid refrigerant (D) then flows from the condenser to the expansion device. This device creates a pressure drop that reduces the pressure of the refrigerant to that of the evaporator. At this low pressure, a small portion of the refrigerant boils (or flashes), cooling the remaining liquid refrigerant to the desired evaporator temperature. The cool mixture of liquid and vapor refrigerant (A) enters the evaporator to repeat the cycle.

互连制冷剂管道

这些单独的组件通过制冷剂管道连接。抽吸线将蒸发器连接到压缩机,排放线将压缩机连接到冷凝器,液体管线将冷凝器连接到扩展装置。扩展设备通常位于液体线的末端,蒸发器的入口。

互连制冷剂管道

制冷剂管道的设计比将制冷剂从一种组件转移到另一个组件。无论在选择和应用冷藏系统的组件时都采用了如何进行护理,如果不正确的设计或安装了互连管道,则可能会遇到操作问题。

制冷剂管道要求

  • 将油返回压缩机
  • 确保只有液体制冷剂进入扩展装置
  • 最小化系统容量损失
  • 最小化制冷剂费用

当制冷系统包括现场组装的制冷剂管道以连接两个或多个组件时,主要的设计目标通常是为了最大程度地提高系统可靠性并最大程度地减少安装成本。要实现这两个目标,相互连接的制冷剂管道的设计必须满足以下要求:

  • 在所有操作条件下以适当的速度将油返回压缩机
  • Ensure that only liquid refrigerant (no vapor) enters the expansion device
  • 最小化由管道和配件压力下降引起的系统容量损失
  • 最大程度地减少系统中制冷剂的总费用,以提高可靠性并最大程度地减少安装成本
滚动压缩机

第一个要求是确保在所有操作条件下将石油返回压缩机。油用于润滑和密封压缩机的运动部件。例如,上图所示的滚动压缩机使用两种滚动配置,即面对面配合,以压缩制冷剂蒸气。这些卷轴的尖端配有密封件,并与一层薄层的油一起防止压缩的制冷剂蒸气通过交配表面逃脱。同样,其他类型的压缩机也依靠油进行润滑,并在压缩制冷剂蒸气时提供密封。

典型的是,某些润滑油与制冷剂一起在整个系统的其余部分都泵送。尽管该油在系统中的其他任何地方都没有功能,但制冷剂管道必须设计和安装,以便在所有操作条件下以适当的速度返回压缩机。

将油返回压缩机

返回系统示意图,将油滴与热,高压制冷剂蒸气一起从压缩机中抽出。放电线内的制冷剂的速度必须足够高,以将小油滴通过管道带到冷凝器。

将油返回压缩机

在冷凝器内部,制冷剂蒸气将其冷凝成液体。液体制冷剂和油具有彼此的亲和力,因此油很容易与液体制冷剂一起移动。从冷凝器中,这种液体制冷剂和油的混合物通过液体管道流到膨胀装置。

接下来,将制冷剂 - 油混合物通过膨胀装置计量到蒸发器中,液体制冷剂会吸收热量和蒸发。同样,吸气管线内的制冷剂蒸气的速度必须足够高,以使油滴通过管道恢复到压缩机。

如果没有足够的速度和适当的管道安装,则可能会将油被困在系统中。如果这种情况足够严重,则压缩机中的油位降低可能会导致润滑问题,并可能导致机械故障。

Thermostatic Expansion Valve (TXV)

The second requirement of the refrigerant piping design is to ensure that only liquid refrigerant enters the expansion device. There are several types of expansion devices, including expansion valves (thermostatic or electronic), capillary tubes, and orifices.

Thermostatic Expansion Valve (TXV)

In addition to maintaining the pressure difference between the high-pressure (condenser) and low-pressure (evaporator) sides of the system, a thermostatic expansion valve (TXV) also controls the quantity of liquid refrigerant that enters the evaporator. This ensures that the refrigerant will be completely vaporized within the evaporator, and maintains the proper amount of superheat in the system.

过冷

Inside the condenser, after all of the refrigerant vapor has condensed into liquid, the refrigerant is subcooled to further lower its temperature. This subcooled liquid refrigerant leaves the condenser (A) and experiences a pressure drop as it flows through the liquid line and accessories, such as a filter drier and solenoid valve, installed upstream of the TXV. On the pressure-enthalpy chart, Figure below on page 5, this moves the condition of the refrigerant toward the saturated liquid curve (B). If this pressure drop is high enough, or if the refrigerant has not been subcooled enough by the condenser, a small portion of the refrigerant may boil (or flash), resulting in a mixture of liquid and vapor (C) entering the expansion device.

过冷

扩展装置上游的制冷剂蒸气的存在非常不受欢迎。蒸气的气泡在TXV端口中的液体中的液体降低了液体的流速,因此大大降低了蒸发剂的容量。这导致阀门操作不稳定。

The design of the piping system must ensure that only liquid refrigerant (no vapor) enters the expansion device. This requires that the condenser provide adequate subcooling at all system operating conditions, and that the pressure drop through the liquid line and accessories not be high enough to cause flashing. Subcooling allows the liquid refrigerant to experience some pressure drop as it flows through the liquid line, without the risk of flashing.

吸气线中的压降

制冷剂管道设计的第三个要求是最大程度地减少系统容量损失。为了实现系统的最大容量,制冷剂必须尽可能有效地通过系统循环。这涉及最大程度地减少管道和其他系统组件的压力下降。

Whenever a fluid flows inside a pipe, a characteristic pressure drop is experienced. Pressure drop is caused by friction between the moving liquid (or vapor) and the inner walls of the pipe. The total pressure drop depends on the pipe diameter and length, the number and type of fittings and accessories installed in the line, and the mass flow rate, density, and viscosity of the refrigerant.

吸气线中的压降

As an example, the chart in Figure above demonstrates the impact of pressure drop, through the suction line, on the capacity and efficiency of the system. For this example system operating with Refrigerant-22, increasing the total pressure drop in the suction line from 3 psi (20.7 kPa) to 6 psi (41.4 kPa) decreases system capacity by about 2.5 percent and decreases system efficiency by about 2 percent.

这揭示了系统设计师必须处理的妥协。吸气管线的直径必须足够小,以使产生的制冷剂速度足够高,可以通过管道携带油滴。但是,管道直径不能太小,以至于产生过度的压降,从而使系统容量过多。

最小化制冷剂费用

前三个要求一直保持不变多年。但是,多年的观察和故障排除表明,制冷剂电荷越低,系统执行越可靠。因此,为制冷剂管道设计添加了第四个要求:最大程度地减少系统中制冷剂的总量。首先,这涉及提出最短,最简单,最直接的管道路由。它还涉及可能使用最小的管道直径,尤其是对于液体线,因为在这三条线中,它对制冷剂的电荷最大。下图显示,液体线仅在其包含的制冷剂量中仅次于冷凝器。

最小化制冷剂费用

这揭示了系统设计师的另一个折衷方案。液体线的直径必须尽可能小,以最大程度地减少制冷剂电荷。但是,管道直径不能足够小,无法产生过大的压降,从而在液体制冷剂到达扩展装置之前会闪烁。

涉及制造商

如果提供,请使用制造商推荐的制冷剂线尺寸

本指南讨论了在空调系统中尺寸互连管道尺寸的过程。选择最佳线条大小所需的一些信息是制造商最了解的。因此,如果制冷设备的制造商提供建议的线条尺寸或用于选择最佳线条尺寸的工具,我们建议您使用这些线条尺寸。

但是,如果制造商未提供线条尺寸,则本指南中概述的过程可用于选择尺寸。

一般管道要求

  • 使用干净型L铜管
    • 铜至铜接头:无通量的BCUP-6
    • Copper-to-steel (or brass) joints: BAg-28, non-acid flux
  • 适当支持管道以说明扩展,振动和重量
  • 避免在地下安装管道
  • 测试整个制冷剂电路是否泄漏

在讨论抽吸,排放和液体线的设计和安装之前,有一些一般要求适用于所有这些线条。

首先,铜管通常用于空调系统中的制冷剂管道。该管道有各种标准直径和壁厚。管道的名义直径以其外直径为单位表示。该管道必须完全没有污垢,比例尺和氧化物。新型L型L或类型的ACR管已被制造商清洗并在两端上盖,用于空调应用。

管道系统是通过将铜管和配件一起构建的。当铜铜接头悬挂时,请使用无通量的bcup-6*。对于铜到钢或铜接头,请使用带有非酸的磁带的Bag-28*。

根据美国焊接协会(AWS)的填充金属规范,用于腌制和烤焊接,出版A5.8-1992

制冷剂管道必须得到适当的支持,以说明膨胀,振动和管道的总重量。当管道发生温度变化时,它会受到一定程度的膨胀和收缩。由于制冷剂管道连接到压缩机,因此将振动力传播到管道本身。最后,必须支撑充满制冷剂的管道和配件的重量,以防止管道下垂,弯曲或破裂。

Avoid installing refrigerant piping underground. It is very difficult to maintain cleanliness during installation or to test for leaks. If underground installation is unavoidable, each line must be insulated separately, and then the lines must be waterproofed and protected with a hard casing (such as PVC).

安装管道后,必须对整个制冷电路进行泄漏测试,然后才能用冷藏剂充电。这个过程通常涉及用干氮加压整个管道系统,以检查每个悬浮的关节是否有泄漏。

这些问题中的每一个都在更详细地讨论 Trane回报手册.

参考

[dvfaqtopic title=”FREQUENTLY ASKED QUESTIONS” topicid=”18933″ skin=”custom” searchbox=”no” switcher=”yes” paginate=”” order=”ASC” orderby=”date”]